Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.
نویسندگان
چکیده
Here, we used phosphorus-32 (32P) labelling in compartmented pots combined with quantitative real-time polymerase chain reaction (PCR) analysis of phosphate(Pi) transporter gene expression to investigate regulation of Pi uptake pathways in barley (Hordeum vulgare), an arbuscular mycorrhizal (AM) plant that does not show strong positive growth responses to colonization.Barley was colonized well by Glomus intraradices and poorly by Glomus geosporum,but both fungi induced significant and similar growth depressions compared with non mycorrhizal controls. The lack of correlation between per cent colonization and extent of growth depression suggests that the latter is not related to carbon drain to the fungus. The contribution of the AM Pi uptake pathway for the two fungi was, in general,related to per cent colonization and expression of the AM-inducible Pi transporter gene, HvPT8, but not to plant responsiveness. Glomus intraradices contributed 48%of total plant P whereas G. geosporum contributed very little.The growth depression in plants where the AM uptake pathway was functional suggests that the contribution of the direct Pi uptake pathway via root hairs and epidermis was decreased. This decrease was not correlated with downregulation of the epidermal-expressed Pi transporter genes, HvPT1 and HvPT2. We hypothesize post-transcriptional or post-translational control of this transport process by AM colonization.
منابع مشابه
Expression of plant genes for arbuscular mycorrhiza-inducible phosphate transporters and fungal vesicle formation in sorghum, barley, and wheat roots.
Sorghum shows strong growth stimulation on arbuscular mycorrhizal (AM) symbiosis, while barley and wheat show growth depression. We identified the AM-inducible phosphate transporter genes of these cereals. Their protein products play major roles in phosphate absorption from arbuscules, intracellular fungal structures. Unexpectedly, barley and wheat expressed the AM-inducible genes at high level...
متن کاملPhosphorus Inflow into Two Species of Clover Root with Different Morphology Colonized by AM Fungi
The effects of arbuscular mycorrhizal (AM) fungi on growth and phosphorus (P) inflow into two species of clover plant with different root morphology were studied. The experiment was arranged as a randomized complete block design consisting of a 2×3×3 factorial combination of two clover species (Trifolium alexandrinum L. and Trifolium pratense L.), three mycorrhiza states (without mycorrhiza, Gl...
متن کاملLocal and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula
Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in ...
متن کاملPhosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.
Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigat...
متن کاملPhosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots.
Phosphorus (P) is a crucial nutrient for plant growth, but its availability to roots is limited in soil. Arbuscular mycorrhizal (AM) symbiosis is a promising strategy for improving plant P acquisition. However, P fertilizer reduces fungal colonization (P inhibition) and compromises mycorrhizal P uptake, warranting studies on the mechanistic basis of P inhibition. In this study, early morphologi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 181 4 شماره
صفحات -
تاریخ انتشار 2009